
Supplementary Materials for
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1 Proof of Theorem 3.1

Here we give the extended version of the proof.
First, we have

H(N (ut+1,Ct+1)) =
1

2
log |Ct+1|+ const,

where |Ct+1| represents the determinant of Ct+1.
In order to calculate Ct+1, we have

C−1
t+1 = −∂2 log p(w|ut+1,Ct+1)

∂w2
,

because the inverse covariance matrix equals to the
second partial derivative of the log-Gaussian density
function w.r.t. w. Furthermore, we can expand
log p(w|ut+1,Ct+1) as follows,

log p(w|ut+1,Ct+1)

≈ log p(w|s1:t+1, r1:t+1)

= log p(w) + log p(r1:t|w, s1:t) + log p(rt+1|w, st+1)+

const

≈ log p(w|ut,Ct) + log p(rt+1|w, st+1) + const,

where ut and Ct are derived from previous observations
(s1:t, r1:t) and treated as known parameters.

Now, we can get

(1.1) C−1
t+1 = C−1

t − ∂2 log p(rt+1|w, st+1)

∂w2
.

The second term of Eq. (1.1) is the Fisher infor-
mation (the negative of the second derivative of the log
likelihood with respect to w) and can be calculated as

F (w, st+1, rt+1)

= −∂2 log p(rt+1|w, st+1)

∂w2

= −∂2 log p(rt+1|W , st+1)

∂W 2

= −∂D(W , st+1, rt+1)

∂W

= −∂D(W , st+1, rt+1)

∂eW ·st+1
· ∂eW ·st+1

∂W · st+1
· ∂W · st+1

∂W

Given ∂AXB
∂X = BT ⊗A, we have

F (w, st+1, rt+1)

= (st+1 ⊗ I) · diag(eW ·st+1) · (st+1
T ⊗ I).

where ⊗ represents Kronecker product, diag is a func-
tion that takes all the elements of a matrix and recon-
struct them into a diagonal matrix and I is a m × m
identity matrix. It’s interesting to see that the Fisher in-
formation does not depend on the response vector rt+1.

Given the above equations, the objective function
can be solved as
(1.2)
arg min

st+1

Ert+1
H(p(w|s1:t+1, r1:t+1))

= arg min
st+1

Ert+1
log |Ct+1|

= arg max
st+1

Ert+1
log |Ct+1

−1|

= arg max
st+1

log |C−1
t + F (w, st+1, rt+1)|

= arg max
st+1

(log |Ct
−1|+ log |I + Ct · F (w, st+1, rt+1)|)

= arg max
st+1

log |I + Ct · F (w, st+1, rt+1)|

= arg max
st+1

tr(log (I + Ct · F (w, st+1, rt+1)))

≈ arg max
st+1

tr(Ct · F (w, st+1, rt+1))

= arg max
st+1

(eW ·st+1)T · (st+1
T ⊗ I) ·Ct · (st+1 ⊗ J),

where tr is the function to calculate the trace of a
matrix, I is an m×m identity matrix and J is a m× 1
vector with ones in all its entries.

2 Synthetic Data

Here we give the detailed procedure to generate syn-
thetic data.

We use three steps to generate simulated spike train
data. First, the structure of the functional network is
proposed. Then, a GLM parameter matrix is created
according to the functional network. Finally, simulated
spike train data is generated by running the GLM. All
the parameters in the simulation process are chosen to



mimic real neurons.

Propose structure of the functional network. In this
step, we use two methods to build the functional net-
work: 1) manually creating some small networks to show
the effectiveness and intuition of our models; 2) generat-
ing random networks to evaluate the generalizability of
our models. The random networks are generated as fol-
lows. First the number of nodes m is chosen. Then for
each pair of nodes in the network, they have a probabil-
ity of 0.3 of getting connected and for each connection,
it has a probability of 0.2 of being an inhibitory con-
nection. We use [1, 20] as time lags for an inhibitory
connection and a time lag drawn from [1, 2] for an ex-
citatory connection. Each node also has an inhibitory
connection directed to itself to mimic the refractory pe-
riod of neurons.

Create GLM parameter matrix from the functional net-
work. First, for any neuron i, the value of bi is randomly
drawn from [−9,−3], which means a spontaneous firing
rate ranging from 0.0001 to 0.05. Then other values in
the parameter matrix are picked according to the con-
nections in this network. For example, if there is an
edge from neuron i to neuron j with time lag l, the
corresponding value in the parameter matrix W will
be set to a none-zero value to represent the strength
of this connection. If the connection is excitatory, the
value will be randomly drawn from [0,−bi]. If the con-
nection is inhibitory, the value will be set to bi to ensure
the inhibition of all excitatory inputs.

Generate simulated spike train data. Given a GLM
parameter matrix, we run the GLM with initial states of
neurons set to be 1. At each time step, the probabilities
of getting a spike are computed before Gaussian noises
with mean 0 and variance 0.0005 are added. Then
Bernoulli distributions with these probabilities are used
to draw values of 0 or 1. If a neuron is intervened in
the simulated experiment, its value will be set to 0 no
matter what the probability is. We continue this process
until the desired length of recording is reached.

3 Small Networks

Here we report experiments that could validate the
intuitions behind our active learning models.

Since the variance and validation model are using
different strategies to choose interventions, we use some
small networks to illustrate the effectiveness of their
intuitions. In the following experiments, in addition
to the aforementioned two baseline methods, we add
another one, First recording, which infers the GLM only
with the initial recording.

Variance model. Figure 1(a) shows three types of

functional networks with inhibitory connections. All
the neurons in these networks have a spontaneous firing
rate of 0.05. The first column in Figure 1(a) shows
the structures of the proposed networks. The second
column shows the neuron that will be picked as the
intervention target if it’s selected by firing rate. The
third column shows the neuron that the variance model
will choose. For instance, in network 1, node 3 is
chosen according to firing rate and node 1 is chosen
by the variance model. It’s clear that when network
1 is inferred by using only observational data, the
connection from node 1 to node 2 will likely be missed.
By silencing node 1, which is chosen by the variance
model, we can discover this connection. One the other
hand, choosing interventions by firing rate will not help.

To illustrate the effectiveness of the variance model,
we show the error e of the inferred model when an ad-
ditional recording is add under the guidance of different
methods. As shown in Figure 2(a), if the simulated
intervention experiments are conducted under the guid-
ance of the variance model, we can always achieve the
highest accuracy.
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(a) Examples for the variance model.
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(b) Examples for the validation model.

Figure 1: The neurons that will be chosen by different
methods for small networks.



Validation model. Similarly for the validation model,
we manually create three functional networks shown
in Figure 1(b). The networks are constructed with
only excitatory connections and each node has a firing
rate of 0.0001 except node 1 has a firing rate of 0.05,
which means the activities of the networks are mainly
driven by node 1. By comparing the intervention
targets chosen by the validataion model and according
to the firing rate, we can see that the validation model
could always choose the node that can maximally filter
spurious connections. As shown in Figure 2(b), the
validation model could achieve the highest accuracy
gain in all three cases.
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ance model are used.
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Figure 2: The errors of the inferred functional networks
by different methods for small networks.


