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Introduction
* Motif: frequently appearing sequence patterns

* Motif discovery:
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* Applications
* Transcription factor binding sites (TFBSs) discovery

* Antibody biomarkers discovery
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Large scale, Large alphabet set, Short

Methods

e Our framework

* Reuse existing techniques!

Traditional Motif Discovery Algorithms
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*Algorithms we propose

* Anchor based Sequence Clustering algorithm (ASC)
* Could capture local similarities
* Avoid pairwise comparisons

* Anchor based similarity

* Represent sequences as g-anchor sets

* ¢.g. 2-anchors of PFSE are {PE FS,SE, P S, F E,P E}

ATFSARWSNMVPDLR
=1 T

¥

RGIGSTLKPFSATRD
e

* Iterative process
* Choose 1nitial centers using odd score
* Indicates how likely an anchor 1s from a motif

* Adjust centers using abundance score

* Indicates how unique an anchor is for a motif

Challenges
* Unknown: number of motifs, length of motifs, etc
* Before next-generation sequencing era

* At most several hundred sequences

* After next-generation sequencing era
* Tens of thousands or even millions of sequences

* Existing methods can not handle the big data challenge very

well
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Experiments

e Real data shows that our framework can reduce the runtime
of MEME from weeks to minutes without losing accuracy!

* Apply ASC on top of MEME, MUSI and GibbsCluster

* Number of recalled motifs from different methods using
synthetic data (10k seq.)
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Conclusions
* Big data challenge

* Reuse existing techniques

* Huge performance gain without losing accuracy



