Fast Motif Discovery in Short Sequences

Honglei Liu¹, Fangqiu Han¹, Hongjun Zhou², Xifeng Yan¹, Kenneth S. Kosik²

¹Department of Computer Science, , University of California, Santa Barbara ²Neuroscience Research Institute, University of California, Santa Barbara

Introduction

- **Motif**: frequently appearing sequence patterns
- Motif discovery:

• Applications

• Transcription factor binding sites (TFBSs) discovery

Challenges

- Unknown: number of motifs, length of motifs, etc
- Before next-generation sequencing era
 - At most several hundred sequences
- After next-generation sequencing era
 - Tens of thousands or even millions of sequences
- Existing methods can not handle the big data challenge very well

Can handle	Can handle	Can work with	Accuracy is as
>10k seq.	>1M seq.	protein seq.	good as

• Antibody biomarkers discovery

ESNTCDLFVWQACDGKQ AEVACEDNFVYQCSDDW SSASCDMFVYQGCAEFN RQGACVDDYVYQCGHFE GHTACMTDFVHQCFPGT PCVDAFVYQQSGCNIA RDGHCADSFVNQCVRPL GRAACVDDFVYQCVRQHE

ATFSARWSNMVPDLR

RG, R_I, R_ _G, (AT, SA, FS, A_F, A_ _S, A_ _A, R_ _S, ..., RD (F_A, S_ _P) ..., D_R, LR

Large scale, Large alphabet set, Short

				MEME
MEME ^[Bailey94,06]			~	~
STEME ^[Reid11]	~	~		~
DREME ^[Bailey11]	~	~		
GibbsCluster ^{[Andre} atta13]	~		~	
MUSI ^[Kim11]	~		~	
Our framework	~	~	~	~

Methods

- Our framework
 - Reuse existing techniques!

- Anchor based Sequence Clustering algorithm (ASC)
 - Could capture local similarities

Experiments

- Real data shows that our framework can reduce the runtime of MEME from **weeks** to **minutes** without losing accuracy!
- Apply ASC on top of MEME, MUSI and GibbsCluster
- Number of recalled motifs from different methods using synthetic data (10k seq.)

- Avoid pairwise comparisons
- Anchor based similarity
 - Represent sequences as *q*-anchor sets
 - e.g. 2-anchors of *PFSE* are {*PF, FS, SE, P_S, F_E, P_E*}

RGIGSTLKPFSATRD

- Iterative process
 - Choose initial centers using *odd score*
 - Indicates how likely an anchor is from a motif
 - Adjust centers using *abundance score*
 - Indicates how unique an anchor is for a motif

Conclusions

- Big data challenge
- Reuse existing techniques
- Huge performance gain without losing accuracy