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Motif discovery 

¨  Motif: frequently appearing sequence patterns 
¨  Given a set of sequences S, the task of motif 

discovery is to identify sequence patterns that 
frequently appear in them 
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¨  Transcription factor binding sites (TFBSs) discovery 

¨  Antibody biomarkers discovery 
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Large scale, Large alphabet set, Short 
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¨  Before next-generation sequencing era 
¤ At most several hundred sequences 

¨  After next-generation sequencing era 
¤ Tens of thousands or even millions of sequences 

¨  Existing methods fail to address the big data 
challenge (large scale, large alphabet set) 
¤ MEME takes weeks to process 10k sequences 
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¨  Sampling method? 
¤ Low frequent motifs will be missed 

¨  Divide and conquer? 
¤ Random partitioning does not work 
¤ Global similarity does not work 
¤ Local similarity is needed 
¤ Pairwise comparisons should be avoided 
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¨  Straightforward methods do not work 
¤ Experiments with a real dataset of 11,642 sequences 
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Our clustering algorithm 
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¨  Anchor based Sequence Clustering algorithm (ASC) 
¤ Could capture local similarities 
¤ Avoid pairwise comparisons 
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Anchor based similarity 
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¨  Represent sequences as q-anchor sets 
¤ Gapped q-gram with variable shapes 
¤ e.g. 2-anchors of PFSE are {PF, FS, SE, P_S, F_E, P_ _E}  

¨  Use anchor based similarity 

 



Anchor based Sequence Clustering algorithm (ASC)  

30 

¨  Iterative process 
¤ Select cluster centers (d anchors) 
¤ Assign sequences to clusters 
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¨  Theoretical analysis 
¤ P1: two sequence containing the same motif share d 

anchors 
¤ P2: two random sequences share d anchors 
¤ P3: a random sequences contain d random anchors 
¤ P1>>P2>>P3 

¨  If we can choose d anchors that are from a motif, 
the clustering will be effective! 
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¨  Significance of a motif 
¤ Over-representation is the key! 

¨  Choose initial centers using odd score 
¤  Indicates how likely an anchor is from a motif 
¤ Pbackground: The probability of seeing an anchor by chance 
¤ Pobserved: The probability we observe 

odd score: 
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¨  Adjust centers using abundance score 
¤  Indicates how unique an anchor is for a motif 
¤ Pobserve within cluster: The observed probability of 

seeing an anchor in a cluster 

Abundance score: 
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¨  Five real datasets 

¨  Synthetic datasets 
¤ Plant motifs in sequences 
¤ Variable length, variable frequency, variable positions, etc 

¨  All the returned motifs are significant (precision=1) 
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¨  Apply ASC on top of MEME, MUSI and GibbsCluster 
¨  Number of recalled motifs from different methods 

using synthetic data (10k seq.) 



Runtime 
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¨  Scalability  



Real data 
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¨  Compare with MEME for Celiac dataset 
¤ 20 motifs were discovered by MEME 
¤ ASC-MEME could find even more motifs 

 

¨  MEME takes weeks 
¨  ASC-MEME only takes minutes 
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¨  Big data challenge 
¨  Reuse existing techniques 
¨  Huge performance gain without losing accuracy 
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