FAST MOTIF DISCOVERY IN SHORT SEQUENCES

Honglei Liu, Fangqiu Han, Hongjun Zhou, Xifeng Yan, Kenneth S. Kosik

University of California, Santa Barbara

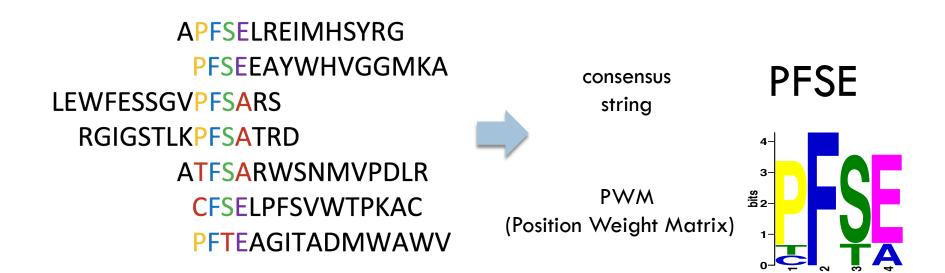
Motif discovery

2

Motif: frequently appearing sequence patterns

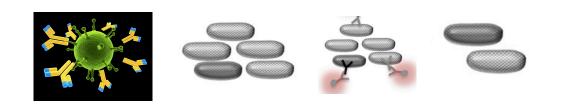
Motif discovery

- 3
- Motif: frequently appearing sequence patterns
- Given a set of sequences S, the task of motif discovery is to identify sequence patterns that frequently appear in them



Applications

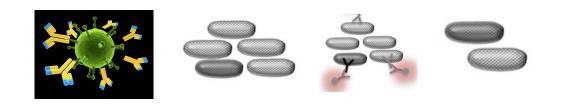
Transcription factor binding sites (TFBSs) discovery Antibody biomarkers discovery



ESNTCDLFVWQACDGKQ AEVACEDNFVYQCSDDW SSASCDMFVYQGCAEFN RQGACVDDYVYQCGHFE GHTACMTDFVHQCFPGT PCVDAFVYQQSGCNIA RDGHCADSFVNQCVRPL GRAACVDDFVYQCVRQHE

Applications

Transcription factor binding sites (TFBSs) discovery Antibody biomarkers discovery



ESNTCDLFVWQACDGKQ AEVACEDNFVYQCSDDW SSASCDMFVYQGCAEFN RQGACVDDYVYQCGHFE GHTACMTDFVHQCFPGT PCVDAFVYQQSGCNIA RDGHCADSFVNQCVRPL GRAACVDDFVYQCVRQHE

Large scale, Large alphabet set, Short

New challenges

- Before next-generation sequencing era
 - At most several hundred sequences
- □ After next-generation sequencing era
 - Tens of thousands or even millions of sequences

New challenges

- 7
- Before next-generation sequencing era
 - At most several hundred sequences
- □ After next-generation sequencing era
 - Tens of thousands or even millions of sequences
- Existing methods fail to address the big data challenge (large scale, large alphabet set)

New challenges

- 8
- Before next-generation sequencing era
 - At most several hundred sequences
- □ After next-generation sequencing era
 - Tens of thousands or even millions of sequences
- Existing methods fail to address the big data challenge (large scale, large alphabet set)
 MEME takes weeks to process 10k sequences

Framework design

We have two options

Framework design

- We have two options
 - Design another motif finding algorithm

Framework design

- We have two options
 - Design another motif finding algorithm
 - Reuse existing methods

Sampling method?

Sampling method?

Low frequent motifs will be missed

- Sampling method?
 - Low frequent motifs will be missed
- Divide and conquer?

- Sampling method?
 - Low frequent motifs will be missed
- Divide and conquer?
 - Random partitioning does not work

- Sampling method?
 - Low frequent motifs will be missed
- Divide and conquer?
 - Random partitioning does not work
 - Global similarity does not work

RGIGSTLKPFSATRD ATFSARWSNMVPDLR

- Sampling method?
 - Low frequent motifs will be missed
- Divide and conquer?
 - Random partitioning does not work
 - Global similarity does not work
 - Local similarity is needed

RGIGSTLKPFSATRD ATFSARWSNMVPDLR

- Sampling method?
 - Low frequent motifs will be missed
- Divide and conquer?
 - Random partitioning does not work
 - Global similarity does not work
 - Local similarity is needed
 - Pairwise comparisons should be avoided

RGIGSTLKPFSATRD ATFSARWSNMVPDLR

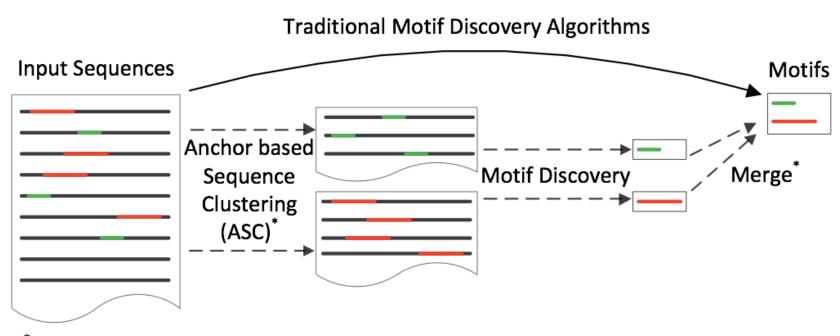
Straightforward methods do not work

Experiments with a real dataset of 11,642 sequences

Methods	# of motifs found	Runtime (Min.)
MEME	20	two weeks
Sampling	11	79
Partitioning	5	9
K-means	14	32

Our framework

20



^{*}Algorithms we propose

Our clustering algorithm

Anchor based Sequence Clustering algorithm (ASC)

- Could capture local similarities
- Avoid pairwise comparisons

Represent sequences as q-anchor sets

Gapped q-gram with variable shapes

e.g. 2-anchors of PFSE are {PF, FS, SE, P_S, F_E, P_E}

PFSE

Represent sequences as q-anchor sets

Gapped q-gram with variable shapes

e.g. 2-anchors of PFSE are {PF, FS, SE, P_S, F_E, P_E}

Represent sequences as q-anchor sets

Gapped q-gram with variable shapes

Represent sequences as q-anchor sets

Gapped q-gram with variable shapes

Represent sequences as q-anchor sets

Gapped q-gram with variable shapes

27

Represent sequences as q-anchor sets

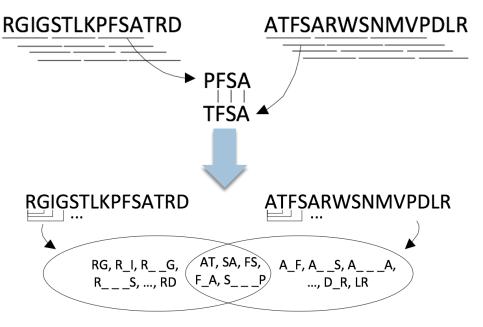
Gapped q-gram with variable shapes

Represent sequences as q-anchor sets

Gapped q-gram with variable shapes

29

- Represent sequences as q-anchor sets
 - Gapped q-gram with variable shapes
 - e.g. 2-anchors of PFSE are {PF, FS, SE, P_S, F_E, P_ _E}
- Use anchor based similarity



Anchor based Sequence Clustering algorithm (ASC)

- Iterative process
 - Select cluster centers (d anchors)
 - Assign sequences to clusters

31

Theoretical analysis

P₁: two sequence containing the same motif share d anchors

- P₁: two sequence containing the same motif share d anchors
- \square P₂: two random sequences share d anchors

- P₁: two sequence containing the same motif share d anchors
- \square P₂: two random sequences share d anchors
- P₃: a random sequences contain d random anchors

- P₁: two sequence containing the same motif share d anchors
- P₂: two random sequences share d anchors
 P₃: a random sequences contain d random anchors
 P₁>>P₂>>P₃

- P₁: two sequence containing the same motif share d anchors
- \square P₂: two random sequences share d anchors
- $\square P_3: a random sequences contain d random anchors$
- $\square P_1 >> P_2 >> P_3$
- If we can choose d anchors that are from a motif, the clustering will be effective!

- Significance of a motif
 - Over-representation is the key!

- Significance of a motif
 - Over-representation is the key!
- □ Choose initial centers using odd score
 - Indicates how likely an anchor is from a motif

- Significance of a motif
 - Over-representation is the key!
- Choose initial centers using odd score
 - Indicates how likely an anchor is from a motif
 - P_{background}: The probability of seeing an anchor by chance

- Significance of a motif
 - Over-representation is the key!
- Choose initial centers using odd score
 - Indicates how likely an anchor is from a motif
 - P_{background}: The probability of seeing an anchor by chance
 - P_{observed}: The probability we observe

- Significance of a motif
 - Over-representation is the key!
- Choose initial centers using odd score
 - Indicates how likely an anchor is from a motif
 - P_{background}: The probability of seeing an anchor by chance
 - P_{observed}: The probability we observe

odd score:
$$S(a) = \log P_{observed}(a) - \log P_{background}(a)$$
$$P_{background}(a) = 1 - (1 - \prod_{\beta_i \in a} \theta_i)^{l-t+1}$$
$$P_{observed}(a) = \frac{f(a)}{N}$$

□ Adjust centers using abundance score

Adjust centers using abundance score Indicates how unique an anchor is for a motif

- □ Adjust centers using abundance score
 - Indicates how unique an anchor is for a motif
 - P_{observe} within cluster: The observed probability of seeing an anchor in a cluster

45

- □ Adjust centers using abundance score
 - Indicates how unique an anchor is for a motif
 - P_{observe} within cluster: The observed probability of seeing an anchor in a cluster

Abundance score:
$$S_k(a) = \log \frac{f_k(a)}{N_k} - \log \frac{f(a)}{N}$$

Experiments

Five real datasets

Name	# of sequences	Length of sequences
Celiac	11,642	15
FXIIa	13,945	10
uPA	5,525	9
SrtA	4,993	8
РК	2,149	8

Experiments

Five real datasets

Name	# of sequences	Length of sequences
Celiac	11,642	15
FXIIa	13,945	10
uPA	5,525	9
SrtA	4,993	8
РК	2,149	8

Synthetic datasets

- Plant motifs in sequences
- Variable length, variable frequency, variable positions, etc

Experiments

Five real datasets

Name	# of sequences	Length of sequences
Celiac	11,642	15
FXIIa	13,945	10
uPA	5,525	9
SrtA	4,993	8
РК	2,149	8

Synthetic datasets

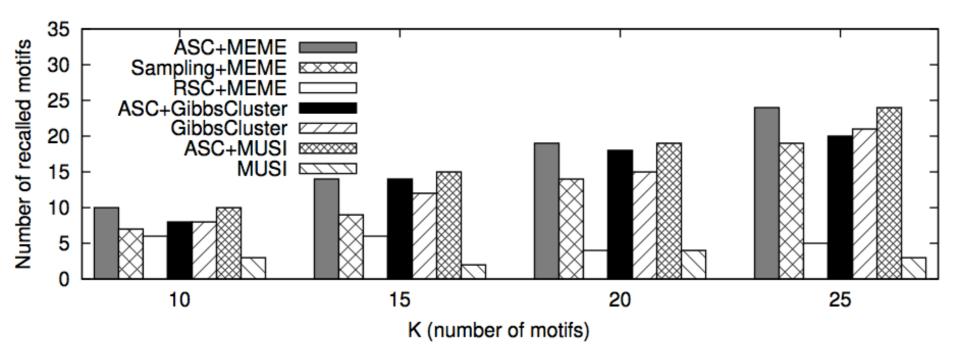
- Plant motifs in sequences
- Variable length, variable frequency, variable positions, etc

□ All the returned motifs are significant (precision=1)

Number of recalled motifs

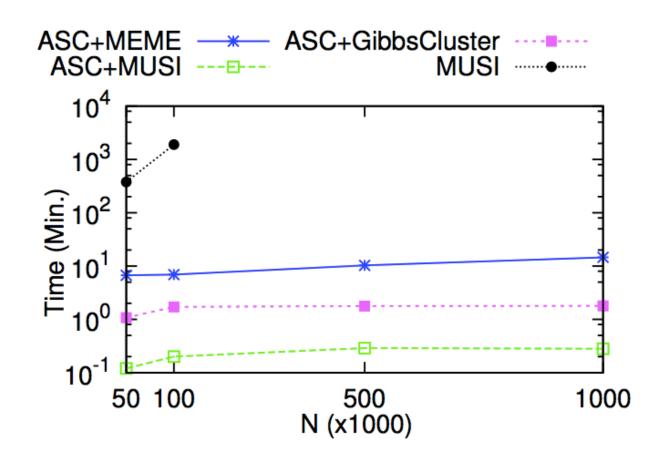
49

 Apply ASC on top of MEME, MUSI and GibbsCluster
 Number of recalled motifs from different methods using synthetic data (10k seq.)



Runtime

Scalability



Real data

- □ Compare with MEME for Celiac dataset
 - 20 motifs were discovered by MEME
 - ASC-MEME could find even more motifs

# of clusters	# of motifs recalled	# of motifs found
10	17	16
20	18	19
40	20	22
60	20	24
w/o k	20	24

- MEME takes weeks
- ASC-MEME only takes minutes

- Big data challenge
- Reuse existing techniques
- Huge performance gain without losing accuracy

53

Thanks